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GAS-KINETIC THEORY BASED FLUX SPLITTING METHOD FOR IDEAL

MAGNETOHYDRODYNAMICS

KUN XU*

Abstract. A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The

new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion

of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme

is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new

scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD

scheme is more robust and efficient than the Roe-type method, and the accuracy is competitive. In this paper

the general principle of splitting the macroscopic flux hmction based on the gas-kinetic theory is presented.

The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP- type

schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly

hyperbolic system.

Key words, magnetohydrodynamics, flux splitting, gas-kinetic scheme

Subject classification. Applied Numerical Mathematics

1. Introduction. The development of numerical methods for the MHD equations has attracted much

attention in the past years. Godunov-type schemes arc considered particularly useful here. On the basis

of Roc's method [18], Brio and Wu developed the first Flux Difference Splitting (FDS) scheme for MHD

equations [3]. Aslan also followed the idea of fluctuation approach to construct a second-order upwind MHD

solver [1]. Zachary et al. applied an operator splitting technique and devised a high-order Godunov type

method [28]. During the same period, the multidimensional extension of MHD solvers was done by Ryu et al.

[19] and Tanaka [22]. On the basis of the nonlinear Riemann solver, Dai and Woodward extended the PPM

method [5]. Powell ct al. constructed an eight-wave family eigcnsystcm for the approximate Riemann solver

[15, 16]. Most recently, based on the Lax-Friedrich flux splitting technique, Jiang and Wu applied a high-order

WENO interpolation scheme to the MHD equations [9]. In order to increase the robustness and simplify the

complicated Roe-type MHD solver, based on the HLL method, Linde developed an adequate Riemann solver

for the heliosphere applications [10]. A majority of the methods mentioned above applied characteristic

decomposition for the MHD waves, where the entropy, slow, Alfven and fast waves have to be considered in

the evaluation of a single flux function. Because of the wave decomposition procedure, considerable work is

required to evaluate and justify the MHD eigcnsystem, where the non-strictly hyperbolicity causes additional

difficulty. Due to the same reason, the issue related to the direct extension of the Flux Vector Splitting (FVS)

scheme to the MHD equations was hardly addressed. The search for robust, accurate and efficient MHD

flow solvers is still one of the primary directions in MHD research.

For the Eulcr and Navier-Stokes equations, the development of gas-kinetic schemes has also attracted

attention [25]. A particular strength of kinetic schemes lies precisely where Godunov-type FDS schemes
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often fail, such as carbuncle phenomena, positivity, entropy c(,ndition [26]. However, like any other FVS

method, the Kinetic Flux Vector Splitting (KFVS) scheme is vc ry diffusive and less accurate in comparison

with the Roe-type Riemann solver, especially for shear and q:ontact waves. The diffusivity of the FVS

schemes, such as Steger-Warming, van Leer and the KFVS [21, 24, 17], is mainly due to the particle or wave-

free transport mechanism, which sets the CFL time step equal to particle collision time. Consequently, the

artificial viscosity coefficient is always proportional to the time steep. Even though numerically the high-order

FVS methods can get crisp shock resolution by using a MUSCL-type reconstruction method, physically it

is impossible to develop a second-order FVS scheme without correcting the free transport mechanism. In

order to reduce the diffusivity, particle collisions have to be modeled and implemented in the gas evolution

stage, such as that in the BGK scheme [27].

The construction of the gas-kinetic FVS scheme for the MHD equations started from Croisille et al.

[4], where a MHD KFVS solver was obtained by simply extending the KFVS flux function of the Euler

equations. The above MHD KFVS scheme is very robust and reliable, but over-diffusive, especially in the

contact discontinuity regions [10]. Recently, another interesting gas-kinetic MHD solver has been developed

by Huba and Lyon [6]. Different from the earlier approach, t!uba and Lyon constructed two equilibrium

states and a transport equation to recover the MHD equations. An important aspect of this method is that

it provides a framework to incorporate additional terms into th(_ MHD equations, e.g. anisotropic ion stress

tensor, and anisotropic temperature distribution. However, the physical basis of the transport equation and

the reliability of the equilibrium states need to be further investigated. Since Huba and Lyon's flux function

keeps the FVS nature, large numerical dissipation is intrinsically rooted.

In this paper, we are going to construct a new kinetic flux splitting method for MHD equations. Based

on the BGK-typc scheme, the KFVS MHD solver of Croisillc et al. is generalized by including particle

collisions. As a result, the new scheme reduces the numerica! dissipation significantly and gives a more

accurate representation of wave interactions. In Section 3, the lew scheme is compared well with the Roe-

type MHD solver [3, 16]. The flux construction method presented in this paper splits the macroscopic flux

function directly, therefore it is very useful in the design of numerical methods for complicated hyperbolic

system.

2. Gas-Kinetic Approach to MHD Equations. In the one-dimensional case, the MHD equation

has the following forms [3]

qt + F(q)z = 0

p, + (pu). = o,
(pu), + (pu2 + p. - B )x = o,

(pV)t + (pUV - B.By)x = 0,
(2.1) (pW)t + (pUW - BxBz)x = O,

(B h + (ByV - = O,
(Bz)t + (B_U - B,W)_ = O,

(pe)t + ((pc + p.)U - Bx(B_U + By V + BzW) = O,

where p. is the total pressure

1

and p is the gas pressure. The total energy density is



Foridealequilibriumgas,theinternalenergyisrelatedto pressurethroughtherelation

pe = p/(3' - 1).

Due to having a different physical origin, it should be emphasized that in order to properly split the energy

flux function, the splitting of internal energy flux peU and the splitting of work done by the pressure pU

should be different, although they are only different by a constant 1/(3' - 1) for the ideal gases.

Theoretically, it is very difficult to construct an equilibrium state and a transport equation to exactly

recover the above ideal MHD equations. However, instead of constructing the equilibrium distribution for

the flow and magnetic field, we can split the MHD flux function directly on the macroscopic level with the

consideration of gas-kinetic theory.

2.1. Gas-Kinetic Flux Splitting Method. In the gas-kinetic theory, the flux is associated with

the particle motion across cell interface. For 1D flow, such as the x-direction, the particle motion in this

dimension is most important in the determination of the flux function. Other quantities, such as y-direction

velocity, thermal energy, and magnetic field, can bc considered as passive scalars, which are transported

with x-direction particle velocity. Normally, particles are randomly distributed around the average velocity.

From statistical mechanics, the moving particles in x-direction can be most favorably described by the

Maxwellian-Boltzmann distribution function,

(2.2) g = p(_)1/% -_'('-v)2,

where U is the average velocity and )_ is the normalization factor of the distribution of random velocity,

which is related to the temperature of the gas flow, i.e. A = -m/2kT, where m is molecule mass, k is the

Boltzmarm constant, and T is the temperature.

The transport of any flow quantities is basically due to the movement of particles. With the above

equilibrium state g, we can split the particles into two groups. One group is moving to the right with u > 0,

and another group moving to the left with u < 0. Before splitting the fluxes, let's first define the useful

moments of the particle distribution function,

(un)a_b = fabun(_)i/2e-A(u-U)2d'a,

where integration limit (a, b) of the particle velocity can be (-oc, +oo), (-co, 0) or (0, +oc). There is a

recursive relation for the moments (un), which is

For example, we have

(u°)_>0 = _erfc(-v/_U)

where erfc is the error function, and

('/_l)u>0 = U(u°)u>o -_- ---

1 e -xU:

2V_

(_,°)_,<o= _erfc(VSU),

(ul)_<0 = u(u°)_,<o

Obviously, if the integration limit is (-oc, co), the following relations hold

I e -AU2

2v_

(u °)=1 , (u I)=U.



Notethatwehavedroppedthesubscriptif (a,b) -- (-oo, oo).

Depending on the particle moving directions, the total dent_ity p can bc split into

p+ = gdu

= p(u°>u>o

and

fp- = gdu
oo

= p(u°),,<o.

Any macroscopic quantities Z without containing explicitly the x-component velocity U, such as density p,

y- and z-direction momentum pV and pW, and magnetic field -,'3xBy, can be split similarly

and

Z + = Z<u°),>0

Z- = Z<u°>,,<o.

The above relations mean that the quantity Z is simply advect_ _dwith the x-direction particle velocity.

The x-direction momentum pU can be split into

(pU) + = ugdu

= p(ul)_>0

and

?(pu)- = ugdu
o_

= p(ul),_<o.

Similarly, any quantities containing U term, such as BxU, ByU, _U, pVU, pWU, can be split as

(zv) ÷ = z<ul>_,>o

and

(ZU) = Z(ul>,<o.

For magnetic field, the above splitting implies that the field is fro "en into the particle motion and transported

with the fluid. Note ZU does not include pU, and the splitting )f pU will be derived later.

The splitting of energy can be written as

(pe)+ = _o°C _u2gdu

= l(u2)_>0

= ou<_)_>o+ T_(_°>.>o

= _pU<u_>,,>o+ pe(_ °)_>0,
L



where pe is the internal energy of the specific distribution function g in Eq.(2.2) with the value of p/4)_.

Similarly, we have

(p_)- = u2 gdu

= lpu<u_)_<o + _(_°)_<0

= _pu(u_)_<0 + p_(_°)_<0.

The above equations imply that the kinetic energy 1 2-_pU can be split as

and the internal energy

p_ = (p_)+ + (p_)

= p_(u°>.>0+ p_(u°).<0.

In general, besides the thermal energy, pe can include other kinds of intcrnal energy, such as magnetic energy

in MHD equations. For nonideal gases, the internal energy could have a complicated form as a function of

p and T. However, the above formulation can still be used to split them in terms of (u°)_,>o and (u°}_<o.

Since the pressure p is related to the internal energy, it can be split as

p = p(u°)u>o + p(u°)u<0 •

1 f u3gdu. The energy transport in the positive x-direction isNow let's consider the energy transport

= (2PU 2 -}- pe)(Ul)u>O + _Vp(u°)u>o + _p(ul)u>O

1pU 2where pe = _ + pe is the total energy density for the specific distribution g. Similarly, the corresponding

flux in the negative x-direction is

/o
= (_pU2 + pe)(ul)u<o + _Up{u°)u<o + _p(ul)u<o

= + lvp< °>o<o+

The total energy flux in x-direction is

_-,o 1 1 2oc 2u3 gdu = (_pU + pe)U + pU

= peU + pU.



From the above three equations, we conclude that the total em_rgy flux peU can be split as

p¢U = (p¢U)+ + (p_U)-

= p_<ul/.>o+ p_(u:>_<0,

which is composed of kinetic energy flux splitting

1 2 1 1 2 1
= _pv <_>_>o+ +_pu (_ >_<o

and the internal energy flux splitting

peU= p_(ul)_>o+pe<u_>_<0.

At the same time, the splitting of the work done by the prcssm e pU term is

pu = (pu) + + (pUy

= 2(Vp(u°)u>o -4- p{ul}u>o) -4- _(Vp{u°}u<o A- p(ul)u<o).

Note the above splitting formula can be generalized to a hyperbolic system with complicated total energy

density.

As a special apphcation of the above splitting principle, let',, split the 1D Euler fluxes. The flux function

for 1D Euler equations can be separated into

)F+p =F/_F;
peU + pU

where f means free transport. The positive flux F 7 is

p
r 7=<=1)=>o pu

pe
)( o )-4- pq U0)u:>0 ,

1 1 1 0
_p(u ),>( + _pU(u ),>0

and the negative part F 7 is

p
= (u)=<o pUr; 1

pe
)( 0 )+ p_ u°),,<o .

½p(ul)o<_+ ½pu(=°/_<0

With the above splitting formula, the numerical flux across a c..,ll interface j + 1/2 for the Euler equations
can be written as

FjS+I/2 = Fj+f + Fj_ 1,"

This is exactly the Kinetic Flux Vector Splitting Scheme for the Euler equations [17, 13], and the positivity

and entropy condition for the above scheme have been analyze( by many authors, such as [14, 23, 12] and
references therein.



As analyzedin [25],all FVSschemesbasedonpositive(negative)particlevelocitiessufferfromthc
sameweakness.Theparticlefreetransportacrosscell interfacesunavoidablyintroduceslargenumerical
dissipation,andtheviscosityandheatconductioncoefficientsareproportionalto theCFL timcstep.In
orderto reducctheover-diffusivityin FVSSchemes,particlecollisionshaveto bcaddedin thetransport
process.

Asa simpleparticlecollisionalmodel,wccanimaginethat theparticlesfromtheleft- andright-hand
sidesofacellinterfacecollapsetotallytoformanequilibriumstate.In ordcrto definetheequilibriumstate
at thecellinterface,weneedfirstto figureout thecorrespondingmacroscopicquantities(1j+1/2 therc, which

arc the combination of the total mass, momentum and cncrgy of the left and right moving beams. For

example, for the Eulcr equations, wc have

qj+l/2 = pC_

pU + pU

pe J p( 1

p(ul)_>0

_pV )(u )_>0 +

( )+ p(ul)_<0 ,

(p__ 1 2 0 1 1_pu )(u )_<o + _pu(u )_<0 j+l

1pU 2 is thc intcrnal energy density pe. Then, from the "averaged" macroscopic flow quantitieswhere p_-

in the above equation, we can construct the equilibrium flux function

F;e+ 1/2 = p5"_ + P

(Pe+P)U 5+1/2

The final flux with the inclusion of both free transport (nonequilibrium) and collision (equilibrium) terms is

Fj+l/2 = _Fjfl/2 -_- (1 - _7)F_+1/2,

where _?is a justifiable parameter, which will bc analyzed in the next section. The scheme with fixed _?c [0, 1]

is called Partial Thermalized Transport method, which is exactly the first order BGK scheme [25]. With

the inclusion of equilibrium flux function, the dissipation in the KFVS scheme is reduced substantially. In

the next section, we are going to extend the above method to MHD equations. In contrast to the Roe's

approximate Riemann solver for the Euler equations [18], in the above BGK method, we have strived for even

less information necessary to form a flux function. So, the above scheme is very efficient. The construction

of (t5+W2 term at the cell interface gives some ideas about how to construct U½ and M½ in the AUSM and

CUSP-type schemes. It will be interesting to see the results if U½ and M½ are replaced by the equivalent

values from qj+l/2 term. The splitting of advection and pressure terms in F_ and F/- has the similarity

with the AUSM-type methods [11, 8, 20].



2.2. Flux Splitting Method for MHD Equations. For the MHD equations, wc can use the same

technique in the last section to split the flux directly. Since the splitting of fluxes is closely related to the

definition of (u°/ and (u 1) terms, which are functions of x-dir,;ction velocity U and the "temperature" )_.

For the MHD equations, both gas and magnetic field contribate to the total pressure p., and the total

internal energy is a combination of gas and magnetic cncrgy. 'Vith the definition of normal pressure from

the distribution function g

F (u - U)2 gdu = P_ ,
O0

the total pressure (gas + magnetic:) in the MHD equations uni( uely determines the value of A

P P

2p. 2v+ (B_ + B_ + BD'

where p is the gas pressure. The velocity U in g can be the same as thc macroscopic fluid velocity in the

x-direction.

After determining A and U, wc are ready to split thc MHD flux function,

pU

pU 2 -k-po

pUV - B=By

F = pUW - BxBz

ByU - B=V

B_U - B=W

peU + poU - B_(ByV + B_W

= V; + r;

where P0 = p. - B_. The positive flux F 7 is

F7 = (ul)_>0

+

P

pU

pV

pW

Bu

B_

pe

0

po(u°h,>o

-B_B u (u°)_,>o

-BxB_(u°)_,>o

-BJ (u°),,>o

-B_W(u°),_>o
1
_(poU(u°)_,>o + po(ttl)u>o) - B_(i'_uV + BzW)(u°)_,>o



Similarly, the negative flux is

P

pU

pV

pW

By

B_

pc

0

p0(u°)_<0

-BxBy(u°)u<o

-BxBz(u°)_<o

-B.V(u°)_<o

-B_W(u°)_<o
1 0
_(poU(u >_<o + po(ul)u<o) - B_(BuV + B_W)(u°}_,<o

Combining the above splitting fluxes, the free transport flux for MHD equations at a cell interface becomes

This formulation is exactly the one given by Croisille et M. [4]. Numerically, the above flux function is very

reliable and robust [10], and the scheme performs well for these problems for which the Roe scheme fails,

such as the odd-even decoupling and carbunclc phenomena. However, the accuracy of the above scheme is

noticeably worse, especially around contact and tangential discontinuities in the MHD applications.

Now let's construct the corresponding equilibrium flux for the MHD equations. The corresponding

macroscopic variables of a equilibrium statc at a cell intcrfacc arc,

(2.3) Ctj+112 =

P

DO

#?

D,,

D:

PC- j+ l12

=q; -'l- q97+ 1 ,

where

p<_°)_>o

p(ulh,>o

pV(u%,>o

pW(u°),,>o

B,(u°),,>o

B_<u°),,>o
1 1

(p_ - ½pu2)<u%,>o+ _pu<_ >_>0 j



and

P(U°)_,<o

p(ul)_<0

pV(u°),,<o

q}+l = pW (u°)u<o

B_(u°)_<0

B_(u°)_<0

(pc- ½pu )(u0) <0+ ½pu(u').<0 )
iT1

With the above "averaged" macroscopic variables qj+l/2, the equilibrium flux can bc constructed as

Ff'+ll2 = F(Clj+w2)

pu2 + p. _ 1)_

pUV - BxBu

ByU - B_:V

B£-B_W

(_ + p.)5 - [_(B_(J + B_i" + [_W)

where/)x = Bx is a constant in the 1D case and

j÷l/2

iv, =('y-l) pC- p(U 2+'(/'_+I7V 2)- (B 2 + t,y + B 2) + (B 2 + B v + B2z).

The final flux across a cell interface is a combination of nonequ librium and equilibrium ones,

(2.4) Fj+I/2 = r/Ff+,/2 + (1 - _l)F_e+l/2,

where 7] is an adaptive parameter. The program from the left _nd right states to the final flux function is

givcn in the Appendix. By rcmoving the contribution from the Jaagnetic field, the above MHD flux function

reduces cxactly to the BGK flux constructed for the Euler equa tions in the last section.

In the current study, we are more interested in the specific nu ncrical flux function for the MHD equations.

For the 1st-order scheme, _7can be fixed, such as 0.7 or 0.5, in t]Lc numerical calculations. Theoretically, the

parametcr _/should depend on the real flow situations: in the equilibrium and smooth flow regions, the use

of _?_ 0 is physically reasonable, and in discontinuity region, _ _hould be close to 1 in order to have enough

numerical dissipation to recover the smooth shock transition, i_ possible choicc for _7 in high-order scheme

is to design a pressure-based stencil, such as the switch functic n in the JST scheme [7]. In the high-order

BGK scheme for the Euler and Navier-Stokes equations [25], witl i the BGK model as the governing equation,

the time dependent flux in the gas evolution stage can be obtai md by following the BGK solution, and the

relation between the collision time T and viscosity coefficient i, well established• For the MHD equations,

basically we only split the macroscopic flux function without ._nowing the explicit microscopic transport

equation for thc fluid and magnetic field. Nevertheless, we can ollow the MUSCL-type approach to extend

the current scheme to high order. For example, we can get thc le_ and right states at a cell interface through

the nonlinear reconstruction of the initial data, then evaluate th-_ flux according to thc formulation given by

Eq.(2.4). A high-order Runge-Kutta time-stepping scheme is als) recommended. For the high-order scheme,

10



theinterpolatedpressurejumppt and Pr around a cell interface can naturally be used as a switch function

for the parameter r_, such as

where a can be some constants.

r/= 1 - exp(--a IPt -- P_'I),
Pt + P_-

3. A Numerical Experiment. For any upwinding schemes, the construction of the flux function,

or the lst-order scheme, is very important in the understanding of the scheme. Since in the high-order

extensions, many factors, such as nonlinear limiter, the reconstruction of conservative or primitive variables

and time-stepping methods, can all affect the performance of the scheme. In the following, wc are going to

apply the current method to the Brio-Wu 1D MHD test case [3]. Only the results from first-order method

with fixed r/= 0.5 will be presented.

The initial condition of the Brio-Wu case is

on the left, and

Pl = 1.0, Ul = 0,pt = 1, B_,l = 0.75, Bu,t = 1

p_ =- 0.125, Ul = 0,pr = 0.1, Bz,r = 0.75, Bu,_ = -1

on the right. The gas constant 7 is equal to 2, which corresponds to an internal degree of freedom K = -1

for the simulated molecule [25]. Note the gas-kinetic flux splitting formula presented in the last section can

be applied to any reasonable %

In order to evaluate the performance of the current method, we are going to compare its numerical

results with that from the Roe-type MHD Riemann solver [3, 16]. The Roe-type MHD solver is considered

the most accurate MHD solver existing so far [10], although the robustness of the scheme is questionable in

some special applications.

There are 400 grid points used from [-1, 1] in the x-direction. The time step is based on At/Ax = 0.2,

which is equivalent to CFL number 0.8 in this case. The results at 200 time steps are displayed in Fig.

4.1-4.5. The results from the Roe scheme [3, 16], with identical initial condition and time step, arc also

plotted in these figures. In most regions, the kinetic and Roe-type MHD solvers give almost identical results,

except the non-conservative quantities at the fast right-moving rarefaction wave.

Due to the nonconvexity, the MHD equations could present compound waves, which directly connect

shock and rarefaction. In Table 1, we list the data at the peak point of the compound wave in the Brio-Wu

test case. Both results are compared with the theoretical prediction in [3]. Fig. 4.6 gives a close look at

the density distributions around the right moving shock and the middle contact discontinuity wave. Three

schemes used here are the current one with r/= 0.5, Croisille et al.'s KFVS MHD solver, and the Roe type

MHD solver. The diffusivity of KFVS MHD solver can be clearly observed.

Table 1. The Flow Variables at the Peak Point of Compound Wave

Scheme p

theory [3] 0.7935

Kinetic 0.8179

Roe 0.8257

U-Velocity V-Velocity B u gas pressure p

0.4983 -1.290 -0.3073 0.6687

0.4679 -1.083 -0.1239 0.7300

0.4623 -0.928 0.0163 0.7400

11



4. Discussion and Conclusion. In this paper, based on the gas-kinetic theory, we have constructed

the kinetic flux splitting formula for the MHD equations. We feel that perhaps there is a wide application

of the splitting techniques presented in this paper. Also, the_ kinetic flux splitting formulation has the

similarities with the AUSM and CUSP type schemes [11, 8], where the advection and pressure terms are

split differently. The numerical results validate the accuracy of the current approach.

In terms of the current gas-kinetic MHD solver, we have the" following remarks:

(1.) Extension of the current method to the multidimensional case is straight-forward using directionally

splitting techniques. If there is a jump of magnetic field in the normal direction, such as Bx in the x-direction

across a cell interface, the weakly nonconservative form [16],

OBx U OB_
O--i- + Ox = 0

can be simply split by changing U in the above equation to U oI Eq.(2.3). Also, in order to satisfy V- B = 0

condition, the projection method (:an bc used to clean up the n_)n-zero divergence of the magnetic field [2].

(2.) The current scheme is very efficient in comparison with the Roe-type Riemann MHD solver. For

example, for 1-D calculations, the flux evaluation takes about 1,'3 of the CPU time of the Roe-type scheme.

For 3D calculations, the saving of computational time is eno::'mous. Since we do not use characteristic

information of the MHD system, the numerical problems relatec to nonconvexity, non-strictly hyperbolicity,

and linearization are avoided. Also, the Boltzmann-type scheme is very robust, especially for high-speed low

density regions [10]. The main reason for this is that the splitting is based on (Un)u>0 and (un)_<0, which

accounts for all particle velocities, instead of switching the fit x function according to the Mach number

M > 1 or M < 1 in many other splitting schemes.

(3.) The extension of the current method to the system with general equation of state p = p(p,e) is

straightforward. The important point is to distinguish the differences between the splitting of internal

energy flux peU and the work done by the pressure pU. No singularity and ambiguity in characteristic

decomposition of the MHD equations will be encountered in the gas-kinetic splitting formulation.

There are still many open questions related to the current gas-kinetic approach. First, underlying thc

macroscopic flux splitting, we do not know the exact microscopic equilibrium state for the whole flow system

including gas and magnetic field. Second, different from the B(_K scheme for the Euler and Navier-Stokes

equations [25], there is no direct way to extcnd the current mett od to solve dissipative (including resistivity

and dispersive effects) MHD equations due to the lack of microscopic transport equations, although the

dissipative terms can be regarded as additional source terms t_, the current ideal MHD equations. Third,

in the plasma calculation, particle method is usually used. Hew to make the smooth transition from the

microscopic particle method to the macroscopic MHD Riemann solver through the gas-kinctic scheme is an

important and interesting research direction. Even with many unknowns, the potential advantage of the

kinetic approach over Riemann solver in the construction of n Jmerical flux function becomes clear when

solving more and more complicated hyperbolic systems.
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Appendix: Evaluation of KineticMHDFluxFuncti_n.
c

c left state = (ADE1,AXM1,AYM1,AZM1,AE_I,ABX1,ABY1,ABZ1)
c right state = (ADE2,AXM2,AYM2,AZM2,AEN2,ABX2,ABY2,ABZ2)

c gas constant 0AM $\gamma$, PI=3.14 $\pi$ should be given.

c left and right side pressure pl, pr
APPI=(GAM-1)*(AEN1-0.5*(AXMI**2+AYMI**2+AZMI**2)/ADE1)

* +0.5*(2.0-GAM)*(ABXI**2+ABYI**2+ABZI**2)
APP2=(GAM-1)*(AEN2-O.5*(AXM2**2+AYM2**2+AZM2**2)/ADE2)

* +0.5*(2.0-GkM)*(ABX2**2+ABY2**2+ABZ2**2)
c left and right sides $\lambda$, and macroscopic velocities $U,V,W$

AEI=O.5*ADE1/APP1
AUI=AXM1/ADE1
AVI=AYM1/ADE1
AWI=AZM1/ADE1

AE2=O.5*ADE2/APP2
AU2=AXM2/ADE2
AV2=AYM2/ADE2
AW2=AZM2/ADE2

c left and right side particle velocity moments <u_0>, <u_l>
TEU0=0.5*DERFC(-AUI*SQRT(AEI))
TEUI=AUI*TEU0+0.S0*EXP(-AEI*AUI*AU1)/SQRT(AEI.PI)
TGU0=0.5*(DERFC(AU2*SQRT(AE2)))
TGUI=AU2*TGU0-0.50*EXP(-AE2*AU2*AU2)/SQRT(AE2*PI)

c inteznnediate (equilibrium) state, and corresponding $\lambda$ and pressure.
ADE=ADEI*TEU0+ADE2*TGU0
AU=(ADEI*TEUI+ADE2*TGUI)/ADE
AV=(ADEI*AVI*TEU0+ADE2*AV2*TGU0)/ADE
AW=(ADEI*AWl*TEU0+ADE2*AW2*TGU0)/ADE
ABY=ABYI*TEU0+ABY2*TGU0
ABZ=ABZI*TEU0+ABZ2*TGU0
AE=(AEN1-0.5*ADEI*AUI**2)*TEU0+(AEN2-0.5*ADE2*AU2**2).TGU0

* +0.5*ADEI*AUI*TEUI+O.5*ADE2*AU2*TGU1
TP=(GAM-1)*(AE-O.5*ADE*(AU**2+AV**2+AW**2))

* +O.5*(2.0-GAM)*(ABXI**2+ABY**2+ABZ**2)

c gas-kinetic flux function, ETA $\eta$ is a justifiaole parameter.
FM=ETA*(TEUI*ADEI+TGUI*ADE2)+(1-ETA)*ADE,AU
FU=ETA*(TEUI*AXMI+TGUI*AXM2+(APP1-ABXI**2),T_UO+(APP2-ABX2**2),TGUO)

* +(1-ETA)*(ADE*AU**2+TP-ABXI**2)
FV=ETA*(TEUI*AYMI+TGUI*AYM2-ABXI*ABY1,TEUO-A3X2,ABY2,TGUO)

* +(1-ETA)*(ADE*AU*AV-ABXI*ABY)
FW=ETA*(TEUI*AZMI+TGUI*AZM2-ABXI*ABZI*TEUO-ASX2,ABZ2,TGUO)

* +(1-ETA)*(ADE*AU*AW-ABXI*ABZ)
FBY=ETA*(TEUI*ABYI+TGUI*ABY2-ABXI*AVl*TEUO-ABX2,AV2,TGUO)

* +(1-ETA)*(ABY*AU-ABXI*AV)
FBZ=ETA*(TEUI*ABZI+TGUI*ABZ2-ABXI*AWI*TEUO-A_X2*AW2*TGUO)

* +(I-ETA)*(ABZ*AU-ABXI*AW)
FE=ETA*(TEUI*AENI+TGUI*AEN2

* +0.5*(APPI-ABXI**2)*TEUI+O.5*AUI*(APPI-IBXI**2)*TEUO
* -ABXI*(ABYI*AVI+ABZI*AWI)*TEU0
* +0.5*(APP2-ABX2**2)*TGUI+O.5*AU2*(APP2-_BX2**2)*TGUO
* -ABX2*(ABY2*AV2+ABZ2*AW2)*TGUO)
* +(1-ETA)*((AE+TP)*AU-ABXI*(ABXI*AU+ABY*_V+ABZ*AW))
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FIG. 4.1. Density distributions with 400 grid points, solid line: first-order BGK-type scheme, dashdot line: first-order

Roe-MHD solver

0.7

0.6

0.5

04

0.3

02

01

0

_0.2

_oi_ ......... 12 _ o12 o14 o16 oi,

FIG. 4.2. x-component velocity distributions with 400 grid points, solid line: first-order BGK-type scheme, dashdot line:

first-order Roe-MHD solver
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FIG. 4.3. y-component velocity distributions with 400 grid points, sol'-d line: first-order BGK-type scheme, dashdot line:
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